Corrosion Electrochemistry of Chromium in Molten FLiNaK Salt at 600 °C

Author:

Chan Ho LunORCID,Romanovskaia ElenaORCID,Romanovski ValentinORCID,Sur DebashishORCID,Hong Minsung,Hosemann Peter,Scully John R.ORCID

Abstract

The manuscript revisits the corrosion behavior of pure Cr in molten FLiNaK salt at 600 °C from the perspective of corrosion electrochemistry. In this work, the potential-dependent, rate-limiting charge-transfer, and salt film-mediated mass-transport controlled regimes of Cr corrosion in FLiNaK at 600 °C are investigated. The kinetic and thermodynamic parameters that limit electrodissolution and the consideration of grain orientation on these regimes are elucidated. At low Cr(III) concentrations, the corrosion process is governed by charge transfer control at low overpotentials and is crystal orientation dependent. However, when Cr(III) concentrations are high or when there is a high overpotential, the formation of a metal fluoride salt film on the Cr surface shifts the kinetic behavior to be governed by mass transport control at all anodic potentials with a surface morphology controlled by salt film deposition location and identity. Evan’s diagrams were developed to consolidate and elucidate these observations. These findings were supported by an examination of the post-corrosion microstructure, X-ray diffraction of solidified salts, and thermo-kinetics analysis in each corrosion regime.

Funder

Basic Energy Sciences, Energy Frontier Research Center

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3