Isotropic Structure and Polymer Interface Intensified Lithium-Ion Transmission in Spherical Graphite Tailings/Coke Composite Anode

Author:

Bian Kaixuan,Meng Yue,Fu Yulong,Feng Lili,Wang Zhi,Liu Junhao,Gong XuzhongORCID

Abstract

Spherical graphite tailings (SGT) as the anode electrode for a lithium-ion battery not only improves the utilization value of SGT as solid waste, but also demonstrates the cleaner production of natural flake graphite (NG) compared with artificial graphite. However, SGT anodes present issues regarding rate performance and cycle stability due to the anisotropy structure and the instability of the solid electrolyte interface (SEI). In this work, a composite anode with isotropic structure was prepared by granulation of high-sulfur coal (HSC) and SGT, while an artificial SEI was prepared utilizing polyether amine/polyvinyl pyrrolidone (PEA/PVP) crosslinked polymer. Results showed that the coke from HSC pyrolysis enhanced the isotropy of the composite anode and improved its rate performance. Compared with SGT, the capacity retention rate of the sample (OSGT-50%OHSC) after oxidation - pyrolysis at a high current density of 5.0 A g−1 increased from 7.2% to 25.8%. Additionally, the PEA/PVP artificial SEI strengthened the cycle stability of the anode. After 1000 cycles, the capacity retention rate increased from 22.5% to 70.3%. The artificial SEI effectively avoided direct contact between the anode and the electrolyte, increasing the initial coulombic efficiency from 70.3% to 77.1%.

Funder

National Key Research and Development Program of China

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3