Aggregation and Capacity Limiting Effects in Anthraquinone-Based Flow Battery Negolytes

Author:

Pasadakis-Kavounis Alexandros,Baj Vanessa,Hjelm JohanORCID

Abstract

Anthraquinone-based molecules are promising electroactive materials for use in aqueous organic flow batteries. At high concentrations in aqueous solutions, the well-known negolyte molecule anthraquinone disulfonic acid (AQDS) molecule has been observed to aggregate under near-neutral and acidic conditions. Aggregation has been hypothesized to be directly linked to observed concurrent capacity reduction. In this study, we investigated three different water-soluble anthraquinones in electrolytes of varying compositions and pH to gain further insight into the possible causes of capacity loss. We used low-field benchtop 1H-NMR and diffusion NMR measurements directly in non-deuterated aqueous flow-battery electrolytes to investigate molecular aggregation. Single-cell testing was performed under exhaustive electrolysis conditions to determine the number of electrons exchanged per molecule. We observed a decrease in the number of electrons exchanged per molecule in the presence of carbonate ions due to CO2 adduct formation. The aggregation constants were determined from both concentration-dependent chemical shifts and self-diffusion coefficients. We show that aggregation of the oxidized form of all three molecules studied here occurs under near-neutral and alkaline conditions and does not affect the number of accessible e.

Funder

Innovationsfonden

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3