Abstract
Desaturation of polymer electrolyte fuel cells (PEFCs) is a critical operation step for providing cell cold-start performance by minimizing residual water in the gas diffusion layers (GDLs), flow field (FF) channels, catalyst layers and membrane after cell shutdown. In this work, transient liquid water removal processes in the FF channels and GDLs are visualized and quantified by subsecond in situ X-ray tomographic microscopy (XTM), and correlated to high frequency resistance (HFR) measurements of the cell. Time-resolved desaturation profiles are analyzed for three commercially available GDLs with representative substrate dimensions. The influence of different substrates on the GDL desaturation behavior is investigated with a cluster connectivity analysis and saturation-dependent effective diffusivities are determined by numerical simulations. Characteristic drying phases are identified for the HFR curves and confirmed with XTM imaging results, providing fundamental understanding of the desaturation dynamics in the PEFCs and enabling the optimization of GDL substrates and gas purge protocols accordingly.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献