Abstract
Polyacrylic acid (PAA) is here studied as a binder material for LiNi0.5Mn1.5O4 (LNMO) cathodes for lithium-ion batteries. When the LNMO electrodes are fabricated with an active mass loading of ∼10 mg cm−2 (∼1.5 mA h cm−2), poor discharge capacity and short cycle life is obtained in full-cells with graphite electrodes. The electrochemical results with PAA are compared with a commonly used water-based binder, sodium carboxymethyl cellulose (CMC), which shows better electrochemical performance. The main cause for these problems in PAA based cells is identified to be the high internal resistance in the initial cycles, caused by factors such as contact resistance, inhomogeneous binder distribution and poor electrolyte wetting of the active material.
Funder
VINNOVA
HORIZON EUROPE Climate, Energy and Mobility
Publisher
The Electrochemical Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献