Review—Single-Molecule Sensors Based on Protein Nanopores

Author:

Zuo JiaqiORCID,Song Ning-Ning,Wang Jia,Zhao Xian,Cheng Meng-Yuan,Wang Qinyi,Tang Wen,Yang Zekai,Qiu KaipeiORCID

Abstract

The recent development of single-molecule sensors (SMS), which detect individual targets one at a time, allows determination of ultra-low concentrations of structurally similar compounds from a complex matrix. Protein nanopores are one of the earliest methods able to resolve the signal from a single molecule, and have already been successfully employed in commercial DNA sequencers. The protein nanopore based SMS, however, remains challenging, largely because the quantitative single-molecule analysis requires recording a sufficient number of signals for statistical significance within a reasonable time frame, thus restricting the lower limit of detection. This review aims to critically evaluate the strategies developed in this field over the last two decades. The measurement principle of nanopore SMS is first elucidated, followed by a systematic examination of the eight common protein pores, and a comprehensive assessment of the major types of sensing applications. A particular emphasis is placed on the intrinsic relationship between the size and charge of protein nanopores and their sensing capabilities for different kinds of analytes. Innovative approaches to lift the performance of nanopore SMS are also analyzed in detail, with a prediction at the end of the most promising future applications.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

State Key Laboratory of Pollution Control and Resource Reuse Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3