Abstract
Zn negative electrodes are expected to be used in next-generation batteries. However, irregular shape evolution, such as mossy structures, limits its practical applications. Cationic additive species are useful in suppressing this, and Li+ is a promising species. To identify the effect of Li+ on the nucleation and growth of Zn, this study analyzed the Zn aggregation behavior during electrodeposition with Li+ at the initial stage via experimental methods and theoretical calculations using density functional theory and kinetic Monte Carlo simulations. The results suggest that Li+ affected the surface diffusion of Zn adatoms, changing the nucleation and growth during the initial stage of deposition. Li+ allows Zn adatoms to diffuse rapidly owing to the mitigation of the solvation effect on surface diffusion by forming rigid solvation of Li+ in the vicinity of the surface. This results in two-dimensional nucleation of the Zn(0001) facet, which is supported by the X-ray diffraction measurements. Li+ mitigates protrusion as the initial structure of the mossy structure. This analysis provides valuable insight into the control of the behavior of Zn adatoms and their nucleation and growth.
Funder
Japan Society for the Promotion of Science
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献