Abstract
Deposition of a carbon layer on silicon monoxide (SiO) is an attractive method for mitigating the inherent low electrical conductivity and significant volume expansion of SiO, which is a promising anode candidate for Li-ion batteries with high energy density. Herein, we report a method for coating SiO with a vertically grown carbon layer via chemical vapor deposition using low-cost liquefied natural gas (LNG), which is 13 times less expensive than commonly used high-purity CH4. The physical and chemical properties of the carbon-coated samples obtained using CH4 (C-SiO-CH4) and LNG (C-SiO-LNG) were identical, and their electrochemical performances were superior to that of pristine SiO. This low-cost, high-volume manufacturing method promotes the industrialization of Si–C materials for next-generation Li-ion batteries.
Funder
Korea Basic Science Institute
Ministry of Trade, Industry and Energy
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献