Biosensing Efficiency of Nanocarbon-Reinforced Polyacrylonitrile Nanofibrous Matrices

Author:

Apetrei Roxana-Mihaela,Guven Nese,Camurlu PinarORCID

Abstract

The reinforcement of polymer matrices with nanocarbon fillers is highly attractive for electrochemical biosensing (due to enhanced electrical conductivity). Further processing by electrospinning results in versatile nanofibrous mats. This study compares the biosensing performance of composite polyacrylonitrile nanofibers (PAN NFs) electrospun with different carbonaceous fillers (fullerene, carbon nanotubes, graphene). Morphological characterization of the composite NFs is performed by scanning electron microscopy (SEM) and correlated with the performance of the biosensing matrices. Glucose oxidase (GOD) is employed as model enzyme by immobilization through cross-linking. Optimum nanofiller content was evaluated at 2.0 wt%. for carboxyl functionalized-multiwall carbon nanotubes- NFs (highest sensitivity of 61.5 mAM−1cm−2 and limit of detection (LOD) of 2.0 μM), whilst reduced graphene oxide- NFs exhibited 49.3 mAM−1cm−2 sensitivity with the lowest LOD of 1.6 μM within the most extended linear range (up to 20 × 10−3 M). Insignificant effect of interferent sugars led to real sample recovery close to 100%.

Funder

Akdeniz Üniversitesi

COST Action MP1407

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3