Abstract
Currently, LiMnPO4 is a highly prevalent cathode material in lithium-ion batteries. However, its low conductivity and Li+ diffusion rate limit its practical application. To overcome these inherent defect, we have modified its properties by doping Fe at the Mn site. In the LiMn1-xFexPO4 system, the total density of states of electrons near the Fermi level and the energy band of the Fermi surface are obtained by first-principles calculation. The adjustment of the energy band width immediately influences the electronic conductivity of LiMn1-xFexPO4 system, which is positively related to the electrochemical performance. According to the results of first-principles calculation, we speculated that x = 1/4 was the optimal doping concentration. Then, the LiMn1-xFexPO4/C systems were compounded by hydrothermal method to verify the first-principles’ hypothesis. The electrochemical tests show that the LiMn3/4Fe1/4PO4/C material has the best cycle performance and rate performance. At the condition of 0.05 C rate, this material possesses an initial discharge capacity of 142.5 mAh g−1. with the capacity retention maintained 93.9% after 100 cycles. The theoretical calculation in consistent with the experimental findings, which accounts for the fact that the first-principles strategy is very effective in the research and development of lithium-ion batteries.
Funder
the Training Foundation for Scientific Research of Talents Project, Hebei Province
Hebei Province Higher Education Science and Technology Research Project
Department of Education Projects of Liaoning Province
Natural Science Foundation of Liaoning Province
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
The Fundamental Research Funds for the Central Universities
Open Research Subject of Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province
Qinhuangdao City University student of Science and Technology Innovation and Entrepreneurship Project
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献