Abstract
This study provides for the first time a detailed investigation of the cold sintering of LiMn2O4 (LMO). Aqueous based cold sintering aid facilitated densification of LMO at lower temperature range of 400 °C to 600 °C within a dwell time of merely 1 min to the relative density of 70%–80%, without any non—stoichiometry or the need of post annealing in air atmosphere. Connected porosity was observed in the cold sintered structure as confirmed by Mercury porosimetry and scanning electron microscopy analysis. Cold sintered and dry milled LMO delivered a specific discharge capacity of 121 mAh g−1 for the first discharge cycle at 0.1 C with an appreciably low capacity drop to 107 mAh g−1 at 15 C. In contrast, LMO powder, without any cold sintering treatment, provided merely 84 mAh g−1 at 0.1 C as initial discharge capacity and only 6 mAh g−1 at 2 C. This difference was interpreted as the removal/thinning of insulating Li2CO3 layer from the LMO particles after being cold sintered as confirmed by X-ray diffraction, thermal analysis and Raman spectroscopy.
Funder
University of Engineering and Technology, Lahore
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献