Improving Li Anode Reversibility in Li–S Batteries by ZnO Coated Separators Using Atomic Layer Deposition

Author:

Blanga Shalev,Yemini Reut,Teblum Eti,Tsubery Merav,Taragin SarahORCID,Noked MalachiORCID

Abstract

Lithium-sulfur batteries (LSB) are considered a very attractive alternative to lithium-ion batteries due to their high theoretical capacity and low cost of the active materials. However, the realization of LSB is hostage to many challenges associated with the cathode and anode response to the electrochemical conditions inside the battery cell. While working with LSB, elemental sulfur undergoes multielectron reduction reactions until it is reduced to Li2S. The intermediate long chain lithium-polysulfide (LiPS) species are soluble, hence diffuse through the electrolyte solution from the cathode side to the anode. This “shuttle” phenomenon considered to be one of the main issues of LSB. Most effort in investigating LSB focused on the cathode side while only few considered the importance of the lithium anode reversibility and the separator role in preventing the “shuttle” phenomenon. In the current work, we use Atomic Layer Deposition (ALD) to successfully coat a standard polypropylene separator with an additional layer of metal oxides thin film. We show that surface treatment of the separator facilitated improved electrochemical response, and suppressed the shuttling of LiPS to the anode.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. Review on high-loading and high-energy lithium-sulfur batteries;Peng;Adv. Energy Mater.,2017

2. Issues and challenges facing rechargeable lithium batteries;Tarascon,2010

3. Li–O2 and Li–S batteries with high energy storage;Bruce;Nature Mater,2012

4. New approaches for high energy density lithium–sulfur battery cathodes;Evers;Acc. Chem. Res.,2013

5. Lithium-sulfur batteries: electrochemistry, materials, and prospects;Yin;Angew. Chem. Int. Ed.,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3