Electrical and Electrochemical Performances Evaluation of LaNi0.6Fe0.4O3 Cathode Contact and Current Collecting Layer in SOFCs

Author:

Wang Yu,Lyu Qiuqiu,Zhu TenglongORCID,Liu Yang,Sun Kaihua,Sun Zaihong,Bu YunfeiORCID,Zhong Qin,Han MinfangORCID

Abstract

In this work, the electrical and electrochemical performances of LaNi0.6Fe0.4O3 (LNF) cathode contact and current collecting layer are investigated. The screen-printed LNF thin film on LSCF-GDC cathode effectively improves the performance of anode supported single cell with maximum power density increase by ∼15% and polarization resistance decrement by ∼24%. However, the LNF layer is found to hinder oxygen diffusion under low cathode oxygen partial pressure below ∼0.07 atm. For the application as thick contact layer, an optimized method is developed in combination with alternate ink deposition and drying processes, to provide decent structural stability and interfacial contact. The area specific resistance (ASR) of thick LNF contact layer shows high long-term stability under current load of 300 mA cm−2. The ASR stabilizes at 0.086 Ω·cm2 for more than 1600 h. Moreover, the LNF contact layer operates stably after 7 thermal cycles. The results indicate that, LNF is promisingly applicable as current contact and collecting material in solid oxide fuel cells.

Funder

Open Fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control

Fundamental Research Funds for the Central Universities

State Key Laboratory of Power System and Generation Equipment

Ministry of Science and Technology of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3