Hybrid Methodology for Parametrisation of Proton Exchange Membrane Fuel Cell Model for Diagnostics and Control Applications

Author:

Kravos AndražORCID,Voglar Tit,Kregar Ambrož,Katrašnik TomažORCID

Abstract

Electrochemical impedance spectroscopy (EIS) is a very powerful tool for the diagnosis and characterization of fuell cells (FC). However, there is still a lack of physico-chemically consistent models that include parameters with a clear physical meaning and can be related to intrinsic parameters of FC. To fill this knowledge gap, this paper presents a novel, mechanistically based and computationally efficient FC modelling framework for time and frequency domain simulations. Furthermore, the model consistently handles forward and backward reactions, ensuring its validity at all current densities. These features enable the development of a hybrid methodology for parameterising the FC model in both domains, resulting in unprecedented accuracy in determining the internal states around which the EIS perturbation is applied. Furthermore, innovative modelling framework incorporates a 1D analytical solution of FC impedance that for the first time accounts for both electrodes, the membrane and individual effects of the electrodes coupled to the respective GDL and channel, all significantly impacting the accuracy of the model. This was confirmed by state-of-the-art reproduction of experimental data with R2 values exceeding 0.965 for data not used in the parameterisation. The presented modelling framework thus provides a modelling basis for observer functionalities beyond the state-of-the-art.

Funder

HORIZON EUROPE Climate, Energy and Mobility

Christian Doppler Forschungsgesellschaft

H2020 Transport

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3