Novel Electrolyte Development for In Situ Formed Li-Metal Batteries Using Amplified Solid Electrolyte Interphase and Plating Investigations

Author:

Behler R.ORCID,Badway F.,Amatucci G. G.ORCID

Abstract

Li-metal anodes can provide high energy density battery configurations, but their practical use is hindered by safety concerns and poor efficiencies due to non-ideal lithium plating. In utilizing ultra-low areal plating capacities (0.08 mAh cm−2, LCP) within Li-metal half-cells, it was found that the initial formation efficiency of the SEI can be amplified and correlated with initial losses and capacity fade over time under higher areal plating capacities (2.5 mAh cm−2, 4.0 mAh cm−2, and 6.5 mAh cm−2) within an in-situ formed anodeless LCO configuration. Herein, these techniques have been utilized to introduce and optimize novel fluoroganosiyl (FOS) based dual salt electrolytes for use in in-situ formed Li-metal batteries, achieving initial cycling loss of <3% (at 4.0 mAh cm−2). Further characterization of the functional benefit of this electrolyte was elucidated using XPS surface analysis, revealing unique Li-C-N, Li3N, Si, and B-N chemistries that likely contribute to the formation of a robust SEI.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3