Review—Flow Batteries from 1879 to 2022 and Beyond

Author:

Tolmachev Yuriy V.ORCID

Abstract

We present a quantitative bibliometric study of flow battery technology from the first zinc-bromine cells in the 1870’s to megawatt vanadium RFB installations in the 2020’s. We emphasize, that the cost advantage of RFBs in multi-hour charge-discharge cycles is compromised by an inferior energy efficiency of these systems, and that there are limits on the efficiency improvement due to internal cross-over and the cost of power (at low current densities) and due to an acceptable pressure drop (at high current densities). Differences between lithium-ion and vanadium redox flow batteries (VRFBs) are discussed from the end-user perspective. We conclude, that the area-specific resistance, cross-over current and durability of contemporaneous VRFBs are appropriate for commercialization in multi-hour stationary energy storage markets, and the most import direction in the VRFB development today is the reduction of stack materials and manufacturing costs. Chromium-iron RFBs should be given a renewed attention, since it seems to be the most promising durable low-energy-cost chemistry.

Funder

Russian Science Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference622 articles.

1. Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion;Tolmachev;J. Solid State Electrochem.,2015

2. Flow batteries with solid energy boosters;Tolmachev;J. Electrochem. Sci. Eng.,2022

3. Hydrogen-halogen electrochemical cells: a review of applications and technologies;Tolmachev;Russ. J. Electrochem.,2014

4. Development of a titanium/iron redox couple flow battery system;Savinell,1977

5. Investigation of a parallel plate FeTti redox electrochemical cell;Savinell;J Electrochem Soc,1978

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3