Cobalt-Free Core-Shell Structure with High Specific Capacity and Long Cycle Life as an Alternative to Li[Ni0.8Mn0.1Co0.1]O2

Author:

Liu Yulong,Wu Haohan,Li Kui,Li Hongyang,Ouyang Dongxu,Arab Phillip Peter,Phattharasupakun Nutthaphon,Rathore Divya,Johnson Michel,Wang Yiqiao,Yin Shuo,Dahn J. R.ORCID

Abstract

Reduction of the Co content in Ni-rich positive electrode materials is an intense research area of great interest. Despite high specific capacity, Co-free Ni-rich materials normally suffer from poor cycling performance. In this work, a Co-free precursor with a 16 μm Ni(OH)2 core and 1 μm Ni0.8Mn0.2(OH)2 shell was reacted with LiOH · H2O at 750 °C (CS-750) or 800 °C (CS-800). CS-750 was found to retain the well-defined core–shell structure after heating, while CS-800 became homogeneous in composition due to Ni/Mn interdiffusion at the higher temperature. Although both of materials exhibit higher specific capacity than LiNi0.8Mn0.1Co0.1O2 (NMC811) the charge-discharge capacity retention shows a dramatic difference. The cycling performance of CS-750 is equivalent to NMC811 samples, whereas CS-800 experiences significant capacity fade, suggesting the importance of a core–shell structure for Ni-rich materials with no Co. The electrical resistivity of CS-750 and CS-800 materials are comparable to NCA and are slightly lower than single crystal NMC811 suggesting that Co may not be essential to maintain good electrical properties. The authors believe CS-750 and related materials represent excellent Co-free options for high energy density Li-ion cells.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3