Synthesis of ZnO@ZIF-8 Nanorods with Enhanced Response to VOCs

Author:

Huang Bo,Zeng WenORCID,Li Yanqiong

Abstract

It is an effective way to produce core–shell composite materials by coating nano-metal oxides with metal-organic framework. A self-sacrificial method was reported. ZnO was transformed into ZIF-8 and attached to ZnO. Through the in situ transformation of zinc oxide particles in the matrix, a great many pores are formed to ensure that all parts of ZnO can contact the gas. ZnO has three main functions, providing Zn2+ for ZIF-8 and serving as a template for ZIF-8’s growth, and as an active material to detect gases. ZIF-8 has two functions. Firstly, it has hydrophobicity to avoid the impact of steam on the gas detection of ZnO; secondly, it can provide a large amount of pores, increase the specific surface area. A great many defects created at the interface of the two materials increases the active sites. The gas-sensing performance of ZnO to volatile organic compounds can be improved using the advantages of both materials. The composite sensor has an optimal operating temperature of 350 °C and has more than tripled its response to 50 ppm gases relative to the ZnO sensor. In addition, a gas-sensing mechanism is proposed. An effective strategy for developing high-response VOC sensors is presented in this work.

Funder

Technological innovation and application development of Chongqing Talent Project

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3