Modeling Current Transients in a Reciprocal Motion Tribocorrosion Experiment

Author:

Olsson Claes-Olof A.ORCID,Munoz Anna Neus IgualORCID,Cao ShoufanORCID,Mischler StefanoORCID

Abstract

Tribocorrosion of passivating metals is a dynamic phenomenon causing degradation of materials by a combination of mechanical wear and electrochemical dissolution. The mechanical action typically produces a local removal of particles, metal as well as oxides, resulting in an exposure of the metal surface and is followed by a repassivation process, of which the time-dependent current response is a direct measure. Kinetics for interface-limited film growth were used to find an analytical expression for the current transients, including the conductivity of the electrolyte as well as the contribution from the confined geometry within the mechanical contact. The solution gave a good experimental fit to a series of experiments with a range of electrolyte conductivities, and also to correlate well with values obtained using electrochemical impedance spectroscopy. Parameters from the rubbing experiment were used to calculate curves that compared well with passivation transients recorded on a bare metal surface for the same electrolyte series. The evaluation procedure made it possible to assess the relative resistance contributions from the growing passive film, the confined mechanical contact geometry, and the electrolyte.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference29 articles.

1. Modeling and simulation in tribology across scales: an overview;Vakis;Tribology International,2018

2. Front matter;Landolt,2011

3. Modeling tribocorrosion of passive metals–a review;Cao;Current Opinion in Solid State and Materials Science,2018

4. Tribocorrosion;Mischler,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3