Decomposition of Li2O2 as the Cathode Prelithiation Additive for Lithium-Ion Batteries without an Additional Catalyst and the Initial Performance Investigation

Author:

Zhang LinghongORCID,Jeong Sookyung,Reinsma Nathan,Sun Kerui,Maxwell Derrick S.,Gionet Paul,Yu Taehwan

Abstract

Compared to the graphite anode, Si and SiOx-containing anodes usually have a larger initial capacity loss (ICL) due to more parasitic reactions. The higher ICL of the anode can cause significant Li inventory loss in a full cell, leading to a compromised energy density. As one way to mitigate such Li inventory loss, Li2O2 can be used as the cathode prelithiation additive to provide additional lithium. However, an additional catalyst is usually needed to lower its decomposition potential. In this work, we investigate the use of Li2O2 as the cathode prelithiation additive without the addition of a catalyst. Li2O2 decomposition is first demonstrated in coin half-cells with a calculated capacity of 1180 mAh g−1 obtained from Li2O2 decomposition. We then further demonstrate successful Li2O2 decomposition in single-layer pouch (SLP) full cells and evaluate the initial electrochemical performance. Despite its moisture sensitivity, Li2O2 showed reasonable compatibility with dry-room handling. After dry-room handling, Li2O2 decomposition was observed with an onset potential of 4.29 V vs SiOx anode in SLP cells. With Li2O2 addition, the utilization of the Li inventory from cathode active material was improved by 12.9%, and discharge DCR was reduced by 7% while the cells still delivered similar cell capacities. Cycle performance is not evaluated in this paper due to the high cutoff voltage used, but the factors affecting the cycle performance are discussed. Strategies to further improve the practical use of Li2O2 are also discussed.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3