Abstract
Modeling microstructure evolution in electrochemical systems is vital for understanding the mechanism of various electrochemical processes. In this work, we propose a general phase field framework that is fully variational and thus guarantees that the energy decreases upon evolution in an isothermal system. The bulk and interface free energies are decoupled using a grand potential formulation to enhance numerical efficiency. The variational definition of the overpotential is used, and the reaction kinetics is incorporated into the evolution equation for the phase field to correctly capture capillary effects and eliminate additional model parameter calibrations. A higher-order kinetic correction is derived to accurately reproduce general reaction models such as the Butler-Volmer, Marcus, and Marcus-Hush-Chidsey models. Electrostatic potentials in the electrode and the electrolyte are considered separately as independent variables, providing additional freedom to capture the interfacial potential jump. To handle realistic materials and processing parameters for practical applications, a driving force extension method is used to enhance the grid size by three orders of magnitude. Finally, we comprehensively verify our phase field model using classical electrochemical theory.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献