Abstract
Microbial electrochemical systems offer valuable opportunities in the field of electrochemistry for a wide range of applications and fundamental insights. Applications include renewable power generation, electrosynthesis, and sensing, and provide a critical platform for understanding fundamental electrochemical processes between biotic and abiotic components. However, despite several research efforts, the fundamental electron transfer mechanisms inherent to microbial bioelectrochemical systems remain poorly understood, limiting their full potential and applications. This lack of fundamental understanding stems from both the conceptual and experimental complexity of microbial electrochemical systems. In this context, the possibility of multi-disciplinary research utilizing computational methods provides a powerful tool for this field. Herein, we critically review how computational studies and methods employed to study microbial electrochemical systems in multiple dimensions can be used to clarify the different factors governing microbial electrochemical systems. This discussion addresses how the combination of various techniques can enhance fundamental understanding, providing scientists with tools for the rational design of improved systems and opening exciting new research opportunities.
Funder
Bureau for Economic Growth, Education, and Environment, United States Agency for International Development
National Science Foundation
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献