Abstract
The present investigation reports the role of divalent binary co-dopant (Ca2+) in 11 mol% scandia stabilized zirconia (11SSZ) electrolytes to resolve its severe long-term aging issue for application in solid oxide fuel cells (SOFC). Dense electrolytes were formulated via the solid-state reaction method and their crystal structure was identified by X-ray diffractometer (XRD). To examine total electrical conductivity and its stability in oxidizing and reducing atmosphere DC four-point probe measurement was used. Among all the compositions, 0.2Ca11SSZ demonstrates the highest conductivity of 0.075 S cm−1 at 800 °C, with excellent stability of 6.7%/100 h in a reducing (97 vol% H2/3 vol% H2O) atmosphere. However, the presence of 0.5 mol% calcium in 11SSZ results in more than threefold suppression of aging rate compared to undoped11SSZ i.e. 2.19%/200 h in air atmosphere at 800 °C. Additionally, the doping of divalent Ca2+ widens the electrolytic domain up to pO2 ∼ 10−26 atm at 1000 °C compared to state-of-art 8YSZ (pO2 ∼ 10−22 atm), with 0.024% linear expansion on phase transition and 172 MPa flexural strength. Convincingly, the excellent structure stability and ionic conductivity of calcium co-doped 11SSZ compared to state-of-the-art electrolytes make them potential candidates to be used as an electrolyte for SOFC application.
Funder
National Research Foundation of Korea
Korea Evaluation Institute of Industrial Technology
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献