Abstract
LiNiO2 (LNO) is one of the most potential alternatives to LiCoO2 in Li ion batteries (LIBs). However, it still suffers from poor cyclability. Meanwhile, the recycling processes of LIBs are widely investigated to enable effective recycling for the growing amounts of LIB waste. Cu is one of the dominating impurities in LIB recycling fractions. In this work, LNO and 0.2 mol% Cu-doped LNO are studied. Cu-doping is demonstrated to stabilize the LNO lattice structure, reduce cation mixing and improve the reversibility of phase transitions during electrochemical processes. Consequently, the rate capability of LNO is improved by Cu-doping, especially at high C-rates. The Cu-doped LNO shows much higher capacity retention of 85% than that of 66% for the undoped LNO at the current density of 100 mA·g−1 after 100 cycles in a voltage window of 2.5–4.5 V. Our results show that a possible Cu contamination in the Ni fraction of the LIB material recovery process can be used to enhance the electrochemical properties of newly synthetized Ni-based positive electrode materials.
Funder
National Natural Science Foundation of China
Ministry of Education of the People’s Republic of China
Business Finland
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献