Review—Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries

Author:

Wei FanglinORCID,Zhang Qiaoping,Zhang Peng,Tian Wenqian,Dai Kehua,Zhang Liang,Mao JingORCID,Shao Guosheng

Abstract

The proportion of new energy power generation gets higher and higher, due to the depletion of fossil energy resources. However, new energy power is generally unstable, so that it is necessary to use energy storage batteries to balance the power peak and valley. Although lithium-ion batteries have been widely used in various fields, in particular for large-scale energy storage, the low abundance of lithium in the earth crust makes it untenable to meet the ever-intense future demand. Sodium ion batteries, which have similar energy storage mechanism to lithium-ion batteries, have attracted significant attentions due to their abundant raw material resources, low cost, and fairly high energy densities. Layered transition metal oxides are a class of the most promising cathode materials for sodium ion batteries, owing to their high theoretical specific capacities, good conductivity, and fast diffusion kinetics. In this paper, we conduct a comprehensive review of the electrochemical performance, structural characteristics, performance shortcomings and modification technologies about the O3- and P2-type layered transition metal oxide cathode materials. The application potentials of layered materials are summarized and analyzed, which provides a reference for the industry to select the most promising and practical layered cathode material for sodium ion batteries.

Funder

Key Research and Development and Promotion of Special Projects (scientific and technological research) of Henan Province

National Natural Science Foundation of China

Energy Storage Materials and Processes Key Laboratory of Henan Province Open Fund

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3