A Balancing Act: Experimental Insights into the Volume Fraction of Conductive Additive in Lithium-Ion Battery Electrodes

Author:

Lauro Samantha N.ORCID,Broekhuis Benjamin G.ORCID,Papa Philippe E.ORCID,Rastogi AashiORCID,Burrow James N.ORCID,Ellison Christopher J.ORCID,Mullins C. BuddieORCID

Abstract

Lithium-ion battery electrodes are traditionally comprised of a cathode or anode material, a carbon conductive additive, and a polymeric binder. The conductive additive and binder are traditionally considered electrochemically inactive; however, the organization of the carbon-binder matrix in 3D space significantly alters electrode physical properties such as electrical conductivity and porosity, resulting in changes to electrochemical performance. While many experimental studies have altered the mass fraction and type of conductive additive, this study systematically studies the volume fraction of electrode components. Electrodes composed of lithium titanate (LTO) active material and SuperP conductive additive across six different electrode compositions from 20–70 vol% LTO and three different electrode film thicknesses of approximately 70, 125, and 225 μm were evaluated. Electrode structures were observed via scanning electron microscopy and electronic conductivities were measured with 4-point probe analysis. Notably, electrochemical performance described as different figures of merit are maximized for different electrode compositions. For example, while thin electrodes with maximal volume fractions of LTO achieve superior volumetric energy density, power density is maximized for thicker electrodes with an optimal volume fraction of conductive additive. This study demonstrates the importance of balancing overpotential arising from ohmic drop and concentration polarization.

Funder

Welch Foundation

National Science Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3