Investigating the Effect of the Separation of Scales in Reduced Order Battery Modelling: Implications on the Validity of the Newman Model

Author:

Squires IsaacORCID,Foster Jamie M.ORCID,Galvis AndresORCID,Cooper Samuel J.ORCID

Abstract

Modelling lithium-ion battery behavior is essential for performance prediction and design improvement. However, this task is challenging due to processes spanning many length scales, leading to computationally expensive models. Reduced order models have been developed to address this, assuming a “separation of scales” between micro- and macroscales. This study compares two approaches: direct microstructure-resolved 3D domain electrochemical modelling and a simplified 1D homogenized model, similar to the Doyle-Fuller-Newman model. The research investigates the validity of the scale separation assumption in continuum electrode-level models by varying scale separation factors, boundary conditions, and geometries. The findings reveal increases in deviation between the 3D models and 1D models for more tortuous, less porous microstructures, especially under higher discharge rates. However, under realistic conditions, with an electrode featuring eight particles across its thickness and typical transport properties, the 3D model predicts only a slight (2%) increase in current compared to the 1D model at a high rate of 7C (approximately j ≈ 350 Am−2). These results suggest that the separation of scales assumption in the DFN model is generally suitable for a wide range of operating conditions. However, 1D models may overlook local variations in electrolyte concentration and potential, crucial for understanding degradation mechanisms.

Funder

Faraday Institution

Publisher

The Electrochemical Society

Reference29 articles.

1. Free radicals: making a case for battery modeling;Howey;Electrochem. Soc. Interface,2020

2. A continuum of physics-based lithium-ion battery models reviewed;Planella;Prog. Energy Combust. Sci.,2022

3. Safety modelling and testing of lithium-ion batteries in electrified vehicles;Deng;Nat. Energy,2018

4. Computational understanding of li-ion batteries;Urban;npj Computational Materials,2016

5. Methods–Kintsugi imaging of battery electrodes: distinguishing pores from the carbon binder domain using PT deposition;Cooper;J. Electrochem. Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3