Abstract
Graphite is a well-known anode material for commercial lithium-ion batteries, and its physical and electrochemical properties have been studied extensively. However, the origin of an inductive loop observed in the low-frequency region of the Nyquist complex plane impedance spectrum of the graphite anode has been widely debated and attributed to contrasting reasons. This paper investigates the impedance spectrum of the graphite anode at various states of charge (SoCs) using three-electrode galvanostatic Electrochemical Impedance Spectroscopy (EIS) and further explores the impedance response of the electrolyte as a function of frequency. The graphite anode EIS measurement displayed an inductive loop in the low-frequency region for almost entire SoCs, irrespective of the solid electrolyte interphase (SEI) age. To study the origin of this inductive loop in the graphite impedance spectrum, we fabricated a three-electrode pouch cell with graphite and NMC electrodes and estimated the electrolyte impedance in the frequency range from 1 MHz to 0.05 Hz. The electrolyte impedance at low frequencies exhibited inductive behavior, indicating a significant role of the electrolyte in the origin of the inductive characteristic in the low-frequency region of the graphite EIS spectrum.
Funder
the DEVCOM Army Research Laboratory
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献