Abstract
Self-supporting three-dimensional (3D) transition metal electrodes have been considered for designing high-performance non-noble metal oxygen evolution reaction (OER) catalysts owing to their advantages such as binder-free, good mass transfer, and large specific surface area. However, the poor conductivity of ((oxy)hydr)oxides and the difficulty in adjusting their electronic structure limit their application. As an alternative strategy, instead of constituting the array electrode by the active components themselves, we herein report 3D Co(OH)2@MnO2 heterostructure decorated carbon nanoarrays grown directly on carbon paper (Co(OH)2@MnO2-CNAs). This unique structure can not only enhance electrical conductivity but also provide a larger specific surface area, and facilitate electrolyte diffusion and ion transport. The heterostructured Co(OH)2@MnO2 formed via incorporation with MnO2 facilitates the transition of CoII to CoIII in Co(OH)2 and it increases the storage of oxidative charge in the catalyst, leading to an OER activity matching with benchmark RuO2 and good stability. Density functional theory calculations suggest that the improved OER performance can be attributed to the formation of the heterojunction structure, resulting in the modulation of the electronic structure of Co atoms and the reduction of the free energy barrier of the rate-determining step for the OER.
Funder
National Natural Science Foundation of China
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献