Enhanced Oxygen Evolution Reaction Electrocatalysis on Co(OH)2@MnO2 Decorated Carbon Nanoarrays: Effect of Heterostructure, Conductivity and Charge Storgae Capability

Author:

Zheng Tianlong,He Jing,Cai Pingwei,Liu Xi,Wu Duojie,Song Lutao,He QinggangORCID,Tang Yizhao,Wang Guangjin,Gu Meng,Lu Jianguo,Hu Yongfeng,Wen Zhenhai

Abstract

Self-supporting three-dimensional (3D) transition metal electrodes have been considered for designing high-performance non-noble metal oxygen evolution reaction (OER) catalysts owing to their advantages such as binder-free, good mass transfer, and large specific surface area. However, the poor conductivity of ((oxy)hydr)oxides and the difficulty in adjusting their electronic structure limit their application. As an alternative strategy, instead of constituting the array electrode by the active components themselves, we herein report 3D Co(OH)2@MnO2 heterostructure decorated carbon nanoarrays grown directly on carbon paper (Co(OH)2@MnO2-CNAs). This unique structure can not only enhance electrical conductivity but also provide a larger specific surface area, and facilitate electrolyte diffusion and ion transport. The heterostructured Co(OH)2@MnO2 formed via incorporation with MnO2 facilitates the transition of CoII to CoIII in Co(OH)2 and it increases the storage of oxidative charge in the catalyst, leading to an OER activity matching with benchmark RuO2 and good stability. Density functional theory calculations suggest that the improved OER performance can be attributed to the formation of the heterojunction structure, resulting in the modulation of the electronic structure of Co atoms and the reduction of the free energy barrier of the rate-determining step for the OER.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3