Three-Dimensional Porous Structural Polyvinylidene Fluoride-Blending Ethylene Carbonate and MIL-125 (Ti) Composite Membrane-Based Gel Polymer Electrolyte for Lithium Metal Battery

Author:

Fu Zhenyu,Li YuhanORCID,Huang Lirong,Zhang Weiya,Weng LingORCID

Abstract

Lithium metal batteries are considered promising contenders for the next generation of high energy density batteries. However, lithium metal anode with inhomogeneous lithium deposition in liquid electrolyte causes the uncontrolled growth of lithium dendrites. Owing to the high dielectric constant, thermal stability and electromechanical stability of polyvinylidene fluoride, we design a novel gel polymer electrolyte consisting of porous polyvinylidene fluoride polymer matrix, liquid electrolyte, ethylene carbonate and MIL-125 (Ti) (Ti8O8(OH)4(BDC)6, BDC = 1,4-benzene dicarboxylate) for facilitating Li+ transfer and alleviating the growth of lithium dendrites. The high dielectric constant environment facilitates the dissociation of Li+, and the porous polymer matrix structure accommodates more Li+ for fast transfer. Ethylene carbonate reduces the crystallinity of the polymer matrix and improves the ionic conductivity. MIL-125 (Ti) nanoparticles with surface area and uniform micropores improve toughness for enhancing mechanical property, and synergistically promote the Li+ transfer for building stable interfacial phase to alleviate the growth of Li dendrites. Therefore, the gel polymer electrolyte has high ionic conductivity of ∼1.50 × 10−3 S cm−1 at 25 °C, and quasi-solid-state Li/LiFePO4 battery has high discharge capacity of 153.5 mAh g−1 after 250 cycles at 25 °C and 0.3 C.

Funder

China Postdoctoral Science Foundation

the Natural Science Foundation of Heilongjiang Province, China

Science Foundation for Young Scholars of Harbin University of Science and Technology

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3