Abstract
Lithium-ion batteries can last many years but sometimes exhibit rapid, nonlinear degradation that severely limits battery lifetime. In this work, we review prior work on “knees” in lithium-ion battery aging trajectories. We first review definitions for knees and three classes of “internal state trajectories” (termed snowball, hidden, and threshold trajectories) that can cause a knee. We then discuss six knee “pathways”, including lithium plating, electrode saturation, resistance growth, electrolyte and additive depletion, percolation-limited connectivity, and mechanical deformation—some of which have internal state trajectories with signals that are electrochemically undetectable. We also identify key design and usage sensitivities for knees. Finally, we discuss challenges and opportunities for knee modeling and prediction. Our findings illustrate the complexity and subtlety of lithium-ion battery degradation and can aid both academic and industrial efforts to improve battery lifetime.
Funder
Faraday Institution
Agency for Science, Technology and Research
Alliance for Sustainable Energy, LLC
Funda ̧ca ̃o para a Cieˆncia e a Tecnologia
Bundesministerium fu ̈r Bildung und Forschung
National Technology and Engineering Solutions of Sandia, LLC
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
181 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献