Study of Cathode Gas Diffusion Architecture for Improved Oxygen Transport in Hydroxide Exchange Membrane Fuel Cells

Author:

Weiss Catherine M.ORCID,Setzler Brian P.ORCID,Yan YushanORCID

Abstract

The high pH environment in hydroxide exchange membrane fuel cells (HEMFCs) has the potential to reach lower costs than the current proton exchange membrane fuel cells (PEMFCs), the incumbent technology. A significant difference between HEMFCs and PEMFCs is the location of water production within the cell. In PEMFCs, the water is produced on the cathode, limiting oxygen transport. In HEMFCs, the water is produced on the anode where the fuel is pure hydrogen. This allows the cathode to be optimized for oxygen transport without the presence of excess liquid water. Limiting current analysis, a technique previously used in PEMFCs, is adopted in HEMFCs to evaluate the oxygen mass transport resistances for different sections of the cathode. Through elimination of the microporous layer (MPL), gas diffusion layer (GDL), and traditional flow field and using porous nickel foam for gas distribution, the transport resistance at an operating condition of 150 kPa(g) and with the cell temperature at 80 °C was decreased from 112 s m−1 to 48 s m−1, effectively halved. The optimal configuration for performance was found with Ni foam and a GDL, eliminating the MPL and traditional flow field, which vastly improved oxygen transport while maintaining adequate electrical contact with the cathode catalyst layer.

Funder

Advanced Research Projects Agency - Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3