Electrochemical Removal of Lead Ions from Flowing Electrolytes Using Packed Bed Electrodes

Author:

El‐Deab M. S.,Saleh M. M.,El‐Anadouli B. E.,Ateya B. G.

Abstract

Packed bed electrodes, made of stacked screens, have been used as cathodes for the removal of lead ions from flowing alkaline electrolytes. We consider the coulombic efficiency ξ = i Pb / ( i Pb + i H ) , where i Pb and i H are, respectively, the lead deposition and hydrogen evolution currents, and the collection efficiency given by ψ = i L ( exp . ) / nF ν c o , where i L ( exp . ) is the geometric limiting current for lead deposition, ν is the electrolyte flow rate, and c o is the feed concentration of lead ions. Two regions are defined in the current‐ potential relations, depending on whether hydrogen evolution does, or does not, contribute to the measured current, corresponding to ξ less than, or equal to, 100%, respectively. The geometric limiting current, i L ( exp . ) , increases with increase of ν, electrode thickness (L), or specific surface area (S), and with decrease of the viscosity of the electrolyte (μ). The collection efficiency (ψ) increases as ν or μ decreases and L and/or S increases. Operating the cell at higher flow rates increases the overall coulombic efficiency, over a broader range of cell currents. It also increases the geometric limiting current although it decreases the collection efficiency. © 1999 The Electrochemical Society. All rights reserved.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3