Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells

Author:

Srinivasan Venkat,Wang C. Y.

Abstract

This paper seeks to gain a better understanding of the thermal behavior of Li-ion cells using a previously developed two-dimensional, first principles-based thermal-electrochemical modeling approach. The model incorporates the reversible, irreversible, and ohmic heats in the matrix and solution phases, and the temperature dependence of the various transport, kinetic, and mass-transfer parameters based on Arrhenius expressions. Experimental data on the entropic contribution for the manganese oxide spinal and carbon electrodes, recently published in the literature, are also incorporated into the model in order to gauge the importance of this term in the overall heat generation. Simulations were used to estimate the thermal and electrical energy and the active material utilization at various rates in order to understand the effect of temperature on the electrochemistry and vice versa. In addition, the methodology of using experimental data, instead of an electrochemical model, to determine the heat-generation rate is examined by considering the differences between the local and lumped thermal models, and the assumption of using heat generation rate determined at a particular thermal environment under other conditions. Model simulations are used to gain insight into the appropriateness of various approximations in developing comprehensive thermal models for Li-ion cells. © 2002 The Electrochemical Society. All rights reserved.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3