Progress Toward Accurate Through-Plane Membrane Resistance and Conductivity Measurement

Author:

Cooper Kevin

Abstract

An instrument and procedure for evaluation of the through-plane ionic resistance and conductivity of PEMs is presented. The approach facilitates rapid evaluation of bare membranes over a wide range of temperatures and relatively humidity conditions. Use of bare membrane is a key feature because a primary application is characterization of the ionic conductivity of developmental materials for which testing a fuel cell is not practicable. Accurate evaluation of through-plane resistance and conductivity requires adjusting the measured high frequency resistance for non-membrane ohmic contributions. Non-membrane ohmic contributions, referred to in this work as the cell resistance, was determined by extrapolating, to zero thickness, a linear regression of the measured high frequency resistance vs. membrane thickness. The cell resistance was a function of temperature and relative humidity. Using the through-plane resistance corrected for the cell resistance, the area specific resistance and conductivity of dispersion-cast Nafion® NRE-212 was observed to be the same in the through-plane and in-plane directions.

Publisher

The Electrochemical Society

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3