Abstract
This review presents the main principles underlying the theoretical description of the behavior of regular and random arrays of nanometric active sites. It is further shown how they can be applied for establishing a useful semi-analytical approximation of the arrays responses under diffusion limited conditions when they involve the common situation of active sites with identical sizes. This approximation is general and, as exemplified for different type of arrays, can be employed for describing the behavior of any array involving arbitrary distributions of their active sites onto the substrate surface. Furthermore, this efficient approach allows statistical characterization of active sites distributions of any array based on chronoamperometric data.
Funder
CNRS, Ecole Normale Superieure - PSL Research University, Sorbonne University
Xiamen University
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献