A High-Capacity Aqueous Rechargeable Supercapacitors Based on Electrochemical Al3+ Intercalation

Author:

Ai Yuanfei

Abstract

With a three-electron redox-mechanism-based high capacity, Al-ion-based electrochemical battery capacitor systems are expected to provide high capacity, low cost and high safety to meet the increasing energy demands. However, the reversible insertion of Al3+ into electrode materials remains a difficult project. Here, we demonstrate a new strategy to achieve reversible Al3+ insertion in a classical conductive polymeric material namely PEDOT:PSS, in aluminum sulfate aqueous electrolyte system. The freestanding composite film with a hierarchical porous structure is prepared through vacuum-assisted curing of a mixed dispersion containing PEDOT:PSS on carbon cloth substrate. The as-prepared PEDOT: PSS composite electrode exhibits extremely high capacitances of 265 F/g at the current density of 0.2 A/g, and enhanced electrochemical stability in the aqueous Al ions electrolyte. The PEDOT:PSS electrode sustains more diffusion of Al ions with more electric quantity in the Al3+ electrolyte, compared to in traditional acid electrolyte. It also exhibits a lower charge transfer resistance in the aluminum ion electrolyte, rather than in other cations electrolyte, which helps reduce the polarization at the electrode/electrolyte interface and improved the aluminum ion migration. Furthermore, the PEDOT: PSS electrode and an activated carbon anode are assembled as aqueous rechargeable Al ion electrochemical supercapacitor. The discharge capacity of this system exhibits to be 51 mAh/g at the current density of 100 mA/g and displays a high energy density of 43.2 Wh/Kg at the power density of 265 W/Kg, demonstrating a promising aqueous energy storage device with high performance and low cost.

Publisher

The Electrochemical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3