Megasonic Metrology for Enhanced Process Development

Author:

Kumari Sangita,Keswani Manish,Beck Mark,Liebscher Eric,Liang Ted,Deymier Pierre,Raghavan Srini

Abstract

Acoustic cavitation is known to be a primary source of both cleaning and damage of wafers during their megasonic processing. Understanding the response of process fluids to variables like acoustic power recipe and dissolved gases is an important first step in achieving damage-free megasonic cleaning of wafers. This paper reports the development of a portable, UV light tight, cavitation threshold (CT) cell to measure sonoluminescence (SL) signal arising from cavitation. The closed cell, integrated with a gas sensor and contactor, allows SL measurements under very controlled conditions. Using the CT cell the effect of the concentration of dissolved O2, CO2 and air on SL signal has been investigated. Results show that SL varies linearly with dissolved O2 concentration while CO2 is found to be incapable of supporting SL. This study also demonstrates a novel method for precise control of SL through addition of an O2 scavenger with fast O2 removal kinetics.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3