Modification of Electrolyte/Cathode Interfaces by Solid-State Electrolyte Thin Films

Author:

Chiu Kuo-Feng,Chen Cheng-Lun,Chen Bo-Shian,Leu Hoang-Jyh

Abstract

In this study, the bilayers of the lithium phosphorus oxynitride (LiPON) film on LiCoO2 cathode have been deposited using radio frequency (RF) magnetron sputtering with in-situ substrate bias, followed by post-anneal. For the purpose of decreasing charge transfer resistances, the solid-state interfaces between the LiPON solid-state electrolyte and the LiCoO2 cathode have been modified. By controlling different in-situ substrate bias voltages and anneal times, the properties of both LiPON electrolyte thin films and LiPON/LiCoO2 interface have been altered, as characterized by scanning electron microscopy, X-ray diffraction, impedance spectroscopy, and electron spectroscopy for chemical analysis. It is found that the electrolyte/cathode interfaces are modified in terms of contact structures and interface resistances. After anneal of 30 min. at 200 oC in nitrogen environment, the seams and voids at the interface are eliminated. The charge transfer resistance at the interface has been greatly reduced. As a result, one order of reduction in both interfacial resistance and total cell resistance has been achieved.

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3