Calendar Degradation and Self-Discharge Occurring During Short- and Long-Term Storage of NMC Based Lithium-Ion Batteries

Author:

Knap VaclavORCID,Molhanec MartinORCID,Gismero AlejandroORCID,Stroe Daniel-IoanORCID

Abstract

Idling periods are a major part of the Lithium-ion battery operation. Due to parasitic reactions, the battery capacity is decreasing and self-discharge occurs over time. Thus, in order to predict the battery lifetime and optimize its operation, it is required to capture this behavior. In this study, two different storage periods of 2 and 6 months were investigated and used to develop and validate models dedicated to reversible and irreversible capacity loss. It has been observed that while for the shorter storage period, the self-discharge rate does not change significantly, for the longer storage period it decreased during aging. Moreover, the degradation rates vary significantly for various time scales at low temperature, while at medium and high temperatures they are matching closely for 2- and 6-months periodic storage.

Publisher

The Electrochemical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3