Graphene /TiO2 Composite Electrode: Synthesis and Application towards the Oxygen Reduction Reaction

Author:

Al-Kandari Halema Ali,Abdullah Aboubakr Moustafa,Mohamed Ahmed meslam,Al-Kandari Shikah Ali

Abstract

A graphene oxide (GO) was prepared from a commercial graphite nano-crystals using Hummers’ method. Later, GO powder was reduced either by placing it under a H2 gas flow in a controlled gas reactor at 450 oC or using a hydrazine hydrate solution (HH) in a 1000-Watt microwave oven. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction patterns (XRD) confirmed that both of the oxidation and reduction processes of graphite and GO powders, respectively, were incomplete. Also, the surface area of the H2 gas - reduced GO powder was found to be higher than the case where HH was used to reduce the same powder. Fourier transform infrared spectroscopy (FT-IR) and XPS have revealed that GO surface consists mainly of hydroxyl, epoxy, carbonyl and carboxylic groups. The electrocatalytic properties of (i) glassy carbon (GC), (ii) commercial TiO2 (P25-TiO2/GC), (iii) TiO2-supported GO (GO/TiO2/GC), (iv) TiO2 – supported HH – reduced GO (HHRGO/TiO2/GC) and (v) TiO2 – supported H2 gas reduced GO (H2RGO/TiO2/GC) electrodes towards the oxygen reduction reaction (ORR) in acidic solution in presence and absence of UV radiation were examined. The results have shown that the H2RGO/TiO2/GC electrode has the best electrocatalytic activity in terms of current at a certain potential but glassy carbon electrode (GC) was found to be the best in terms of the onset potential of the ORR.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3