Casein from Bovine Milk as a Binder for Silicon Based Electrodes

Author:

Chandrasiri K. W. D. Kaveendi,Jayawardana M D. Chamithri D.,Abeywardana Maheeka Yapa,Kim Jongjung,Lucht Brett L.ORCID

Abstract

Silicon is a promising anode material for lithium ion batteries due to the high theoretical capacity (∼3600mAh/g). However, silicon-based electrodes face rapid degradation due to the extensive volume variation (∼300%) during the lithiation/delithiation process. Binders used in the electrode fabrication play a crucial role for silicon electrodes since it can reduce the mechanical fracture during the cycling process. Recent investigations suggest that in addition to the importance of the mechanical properties of the binder, the chemical reactions between the binder and the surface of the silicon particles also contribute to stabilization. Further investigations suggest that functionalized small molecules can also modify the surface of silicon particles and stabilize cycling. An inexpensive, environmentally friendly alternative has been investigated as a binder for silicon electrodes. Casein is a milk protein found in bovine milk rich in amine groups and carboxylic acid groups which can form bonds with the silanol groups in silicon. A comparative study conducted between PVDF and Casein as binders have shown that when casein was used as binder, it shows better performance compared to PVDF. Surface morphology and solid electrolyte interphase (SEI) was analyzed using electron microscopy techniques and spectroscopic methods and the results will be discussed.

Funder

Department of Energy | SC | Basic Energy Sciences

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3