Low Temperature Densification and Electrical Property of a Carbonate-Added Proton Conducting Ceramic

Author:

Li Xue,Xu Nansheng,Zhange Lingling,Huang Kevin

Abstract

Proton conducting yttrium-doped barium zirconate (BZY) is one of the most studied materials for SOFC applications due to its high bulk proton conductivity, good chemical stability under CO2 and mechanical robustness. However, it requires a very high temperature (1700-2100ºC) and long sintering time (>24 h), even with nano-sized powers, to sinter into a dense ceramic. In this paper, we demonstrate a unique approach to make a dense BZY at much lower temperatures. The method involves prefabrication of a porous BZY matrix by solid-state reaction from micro-sized powders of BaCO3, ZrO2 and Y2O3 and densification by impregnating the porous BZY matrix with a carbonate eutectic mixture (e. g., 62 mol% Li2CO3 and 38 mol% K2CO3) at 600oC. Thus fabricated solid-oxide and carbonate composite is also expected to be a mixed proton and carbonate-ion conductor (MPCC). The initial results show that there are no chemical reactions between BZY and carbonate. The microstructure of the composite MPCC is dense with the carbonate phase filling out the pores in the BZY matrix. The measured effective ionic conductivity reaches 0.33 and 0.38 S/cm at 600ºC in wet air and in wet H2, respectively. The performance of a MPCC-based fuel cell is, however, severely limited by the electrode (Ag) resistance, which is expected to be improved with better electrode materials in future study.

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3