Hybrid Model for Detection of Corrosion in Water Pipeline Images Using CNN and Comparing Accuracy with SVM

Author:

O Naveen kumar reddy,G Ramkumar

Abstract

The work aims at studying a hybrid model for novel corrosion detection in water pipeline images using two different machine learning algorithms in low resolution images. Methods and Material: Convolutional Neural Network (CNN) and Support Vector Machine (SVM) algorithm implemented to detect the corrosion in low resolution image dataset with 40 samples. Results: CNN Classifier model has an detection accuracy value of 93.18% and the SVM has an detection accuracy of 77.77%. Attained significance (p=0.001) through SPSS tool. Conclusion: CNN algorithm perform well compared to SVM algorithm.

Publisher

The Electrochemical Society

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corrosion Area Detection and Depth Prediction using Machine Learning;International Journal of Naval Architecture and Ocean Engineering;2024-09

2. Advanced Machine Learning Techniques for Corrosion Rate Estimation and Prediction in Industrial Cooling Water Pipelines;Sensors;2024-05-31

3. An Efficient Method to Predict Student Education Performance using GoogleNet compared with InceptionNet;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

4. Automated Defect Detection in Electronic Components using Convolutional Neural Networks;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

5. A critical review of machine learning algorithms in maritime, offshore, and oil & gas corrosion research: A comprehensive analysis of ANN and RF models;Ocean Engineering;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3