Impact of Chemical Composition of Strontium-Doped Lanthanum Manganite Cathode on Microstructural Change and Performance During Long-Term Operation of SOFCs

Author:

Matsui Toshiaki,Mikami Yuichi,Muroyama Hiroki,Eguchi Koichi

Abstract

The cells composed of strontium-doped lanthanum manganite (LSM) cathode and yttria-stabilized zirconia (YSZ) electrolyte show time-dependent events, such as the performance enhancement and/or deterioration, under polarized states. In this study, the influence of LSM composition on the microstructure of LSM/YSZ interface as well as electrochemical properties during prolonged operation was investigated. LSM cathodes with three different compositions were used and the microstructural change was evaluated quantitatively by a focused ion beam–scanning electron microscope (FIB–SEM). It was clarified that for LSMs with A-site deficient compositions, the change in TPB-length had a minor contribution to the performance enhancement upon the initial cathodic current passage. Furthermore, after 100 h of discharge the thin layer of LSM was formed over YSZ electrolyte, accompanied with an increase in cathode overpotential. These phenomena are strongly correlated with the change in oxygen nonstoichiometry of LSM under polarized states.

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3