Analysis model of flood spatiotemporal change characteristics based on k-means clustering algorithm

Author:

Abstract

<p>In order to analyze the spatiotemporal change characteristics of regional flood disaster, analyze the main change characteristics and hydrological response of precipitation distribution in Guangxi, and improve the comprehensive utilization efficiency of water resources, this paper introduces the k-means clustering algorithm to design an analysis model of spatiotemporal change characteristics of flood disaster. First of all, obtain the flood data in Guangxi and the observation data of the national meteorological station within 5 km, complete the collection of the basic data of mountain flood disasters. Based on the collected data, an analysis was conducted on the spatial and temporal distribution of flash floods in the Guangxi region. Secondly, the Kriging spatial interpolation method was used to analyze the spatial distribution of precipitation data in Guangxi. The Mann-Kendall trend test was then employed to examine the trend of precipitation-related statistical parameters over time. Additionally, wavelet theory was applied to analyze the time series of annual precipitation and precipitation with different durations in Guangxi. Subsequently, the k-means clustering algorithm was introduced to construct a model for analyzing the spatiotemporal characteristics of flood changes, determining the concentration and duration of precipitation in different years in the region. Finally, analyze the spatiotemporal change characteristics of flood events in different seasons under various indicators, and realize the analysis of flood spatiotemporal change characteristics. The research results indicate that the Frank Copula function fits the best correlation between annual precipitation and temperature, and can better characterize the correlation between the two. The Frank Copula function has the best fitting effect on the correlation between precipitation and temperature in autumn in Guilin, summer in Nanning, and summer and winter in Beihai. In Guangxi Zhuang Autonomous Region, the annual precipitation shows a gradually decreasing trend, especially at R and P stations. In summary, the Frank Copula function can effectively characterize the correlation and trend of precipitation and temperature in different seasons and regions of Guangxi.</p>

Publisher

University of the Aegean

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3