Modeling of nitrate removal from aqueous solution by Fe-doped TiO2 under UV and solar irradiation using response surface methodology

Author:

Abstract

<div> <p>Nitrate is a common groundwater pollutant all over the world. In some regions of Iran, its levels are high enough to cause serious problems to human health and the environment<span dir="RTL">.</span> The objectives of this work were to evaluate the efficiency of Fe-doped TiO<sub>2</sub> nanoparticles at removing nitrate from aqueous solutions under UV and solar radiation and to model nitrate removal using response surface methodology techniques. In this study, a response surface methodology based on the Box&ndash;Behnken design matrix was used to describe the process of nitrate removal from an aqueous solution with four independent parameters, namely Fe-doped TiO<sub>2</sub> (dose 1-2 g l<sup>-1</sup>), nitrate concentration (25-100 mg l<sup>-1</sup>), contact time (10-120 min), and pH (4-9). The results indicated that the removal efficiency of nitrate in the presence of ultraviolet and solar radiation was 56.5 % and 21.8%, respectively. The removal efficiency of nitrate increased with time and initial concentration of nitrate. Analysis of variance (ANOVA) indicated that the proposed model was essentially in accordance with the experimental results with the correlation coefficient R<sup>2 </sup>= 0.9237 and Adj-R<sup>2</sup> = 0.8347. Response surface methodology (RSM) proved to be a powerful statistical tool for investigating the operating conditions for nitrate removal under UV irradiation.</p> </div> <p>&nbsp;</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3