Assessment of Object-Based Classification for Mapping Land Use and Land Cover using Google Earth

Author:

Abstract

<p>Land Use and Land Cover (LULC) maps perform a significant part in Remote Sensing (RS) in monitoring and analyzing earth information for human development. Because of the high spectrum variability, LULC classification from RS data is extremely difficult. The study's objective is to assess the object-based LULC classification (OBC) accuracy of composite images from the Landsat 8 OLI (Operational Land Imager) and auxiliary features using SNIC segmentation and five classifiers on Google Earth Engine (GEE). The outcome of the study indicates that the OBC with only spectral features achieves lesser accuracy because small objects on the land surface cannot be observed. But when OBC is paired with a variety of auxiliary features, the OBC may recognize small objects with greater accuracy. After many subsequent assessments the combination of the following aspect: composite image of all the seven bands, new feature set, Simple Non-Iterative Clustering (SNIC) segmentation algorithm, and Support Vector Machine (SVM) classification algorithm gives better accuracy of ~ 94.42% and kappa coefficient of 92.07. The inclusion of auxiliary features and the OBC method reduces the misclassification rate related to the confusion of bare land, uncultivated land, and urban, which provides accurate information on forest, waterbody, and bare land classes.</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3