Internet of Things Enabled Smart Solid Waste Management System

Author:

Abstract

<p>The Internet of Things (IoT) paradigm roles a crucial play to enhance smart city applications by controlling and tracking city procedures in real-time. Among the most important problems connected to smart city application is solid waste management that is a negative impression on our people's health and environment. The standard garbage management procedure starts with waste generated by city populations and garbage removal bins at the source. Smart waste management utilizing IoT contains for instance analytics and group of data in sensors on smart garbage bins (SGBs), management of waste trucks and city structure, formation and optimization of garbage truck routes, and so on. This study introduces an Elitist Barnacles Mating Optimizer with Hybrid Deep Learning Model for waste classification (EBMOHDL-WC) in the IoT enabled sustainable environment. The presented EBMOHDL-WC system allows the IoT devices to proceed data collection process. Next, the EBMOHDL-WC technique uses MobileNetv2 model for extracting features and the hyperparameter adjustment of the MobileNetv2 technique was implemented by the EBMO technique, showing the novelty of the work. Finally, the waste classification procedure is performed using HDL classifier which integrates two DL models. The experimental evaluation of the EBMOHDL-WC technique is tested on garbage classification dataset from Kaggle repository. Experimentation outcomes of the EBMOHDL-WC technique exhibit</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Urban Waste Data Collection via IoT Network: ABC Algorithm-Based Approach;2024 2nd International Conference on Communications, Computing and Artificial Intelligence;2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3