Drainage network flow anomaly classification based on XGBoost

Author:

Abstract

<p>Identifying and classifying anomalies in on-line monitoring systems of drainage systems is important to reduce urban water pollution. In the context of big data, the mini-batch K-means combined with the XGBoost drainage network abnormal flow identification and classification model is proposed to precisely identify and classify abnormalities that occur in real-time updates of online drainage network data while resolving problems with subjectivity and the lack of uniform standards for classification. First, using Mini Batch K-means, the unclassified drainage network data were sorted into four categories: normal drainage, sneaky drainage, rainwater and sewage mixing, and inflow and infiltration. Next, XGBoost performs data modeling to create a model for classification and identification of drainage flow anomalies. To increase the accuracy of the model, the features were ultimately chosen based on the ranking of the importance of the features, and the model parameters were established using grid search and cross-validation. The results showed that the XGBoost Drainage Network Anomaly Classification and Identification Model can accurately identify four drainage network situations with high classification accuracy and good performance. It was also validated through the application of data from the online system monitoring points in Changsha, China, in 2020.</p>

Publisher

University of the Aegean

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of outdoor rainwater drainage pollution in a hospital;Water Practice & Technology;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3